Hi everyone,
We’re new to Snowplow and just today set up our first cluster. This is a basic configuration with a CloudFront Collector, a handful of requests to the tracking pixel, basic enrichment with EmrEtlRunner, and no custom shredders or schemas.
EmrEtlRunner ran fine for the first time, but has been failing ever since its second run on the [enrich] spark: Enrich Raw Events step. We’ve found the following error message in the logs:
19/09/04 02:58:09 ERROR FileFormatWriter: Aborting job null.
java.io.IOException: Not a file: hdfs://ip-172-31-54-192.us-west-2.compute.internal:8020/local/snowplow/raw-events/archive/run=2019-09-03-17-44-30
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:288)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:194)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
at scala.Option.getOrElse(Option.scala:121)
etc...
This is how we run EmrEtlRunner:
./snowplow-emr-etl-runner run \
-c config.yml \
-r iglu_resolver.json \
-d \
-t targets/ \
-f enrich
This is the output we’re seeing:
uri:classloader:/gems/avro-1.8.1/lib/avro/schema.rb:350: warning: constant ::Fixnum is deprecated
uri:classloader:/gems/json-schema-2.7.0/lib/json-schema/util/array_set.rb:18: warning: constant ::Fixnum is deprecated
D, [2019-09-03T19:42:46.130888 #83618] DEBUG -- : Initializing EMR jobflow
D, [2019-09-03T19:42:47.788460 #83618] DEBUG -- : EMR jobflow j-K0VX7J06FRQK started, waiting for jobflow to complete...
I, [2019-09-03T19:58:51.315069 #83618] INFO -- : No RDB Loader logs
F, [2019-09-03T19:58:51.530948 #83618] FATAL -- :
Snowplow::EmrEtlRunner::EmrExecutionError (EMR jobflow j-K0VX7J06FRQK failed, check Amazon EMR console and Hadoop logs for details (help: https://github.com/snowplow/snowplow/wiki/Troubleshooting-jobs-on-Elastic-MapReduce). Data files not archived.
j-K0VX7J06FRQK: TERMINATING [STEP_FAILURE] ~ elapsed time n/a [2019-09-03 19:52:20 -0700 - ]
- 1. Elasticity Setup Hadoop Debugging: COMPLETED ~ 00:00:28 [2019-09-03 19:52:22 -0700 - 2019-09-03 19:52:51 -0700]
- 2. [enrich] s3-dist-cp: Raw S3 -> Raw HDFS: COMPLETED ~ 00:03:27 [2019-09-03 19:52:53 -0700 - 2019-09-03 19:56:20 -0700]
- 3. [enrich] spark: Enrich Raw Events: FAILED ~ 00:01:50 [2019-09-03 19:56:22 -0700 - 2019-09-03 19:58:13 -0700]
- 4. [cleanup] Empty Raw HDFS: CANCELLED ~ elapsed time n/a [ - ]
etc...
And this is our configuration file:
aws:
# Credentials can be hardcoded or set in environment variables
access_key_id: <%= ENV['AWS_SNOWPLOW_ACCESS_KEY'] %>
secret_access_key: <%= ENV['AWS_SNOWPLOW_SECRET_KEY'] %>
s3:
region: us-west-2
buckets:
assets: s3://snowplow-hosted-assets # DO NOT CHANGE unless you are hosting the jarfiles etc yourself in your own bucket
jsonpath_assets: # If you have defined your own JSON Schemas, add the s3:// path to your own JSON Path files in your own bucket here
log: s3://snowplow-output/log
encrypted: false # Whether the buckets below are enrcrypted using server side encryption (SSE-S3)
raw:
in: # This is a YAML array of one or more in buckets - you MUST use hyphens before each entry in the array, as below
- s3://snowplow-collector-logs # e.g. s3://my-old-collector-bucket
processing: s3://snowplow-collector-logs/processing
archive: s3://snowplow-collector-logs/archive # e.g. s3://my-archive-bucket/raw
enriched:
good: s3://snowplow-output/enriched/good # e.g. s3://my-out-bucket/enriched/good
bad: s3://snowplow-output/enriched/bad # e.g. s3://my-out-bucket/enriched/bad
errors: s3://snowplow-output/enriched/errors # Leave blank unless :continue_on_unexpected_error: set to true below
archive: s3://snowplow-output/enriched/archive # Where to archive enriched events to, e.g. s3://my-archive-bucket/enriched
shredded:
good: s3://snowplow-output/shredded/good # e.g. s3://my-out-bucket/shredded/good
bad: s3://snowplow-output/shredded/bad # e.g. s3://my-out-bucket/shredded/bad
errors: s3://snowplow-output/shredded/errors # Leave blank unless :continue_on_unexpected_error: set to true below
archive: s3://snowplow-output/shredded/archive # Where to archive shredded events to, e.g. s3://my-archive-bucket/shredded
consolidate_shredded_output: false # Whether to combine files when copying from hdfs to s3
emr:
ami_version: 5.9.0
region: us-west-2 # Always set this
jobflow_role: EMR_EC2_DefaultRole # Created using $ aws emr create-default-roles
service_role: EMR_DefaultRole # Created using $ aws emr create-default-roles
placement: us-west-2a # Set this if not running in VPC. Leave blank otherwise
ec2_subnet_id: # Set this if running in VPC. Leave blank otherwise
ec2_key_name: snowplow-emr
security_configuration: # Specify your EMR security configuration if needed. Leave blank otherwise
bootstrap: [] # Set this to specify custom boostrap actions. Leave empty otherwise
software:
hbase: # Optional. To launch on cluster, provide version, "0.92.0", keep quotes. Leave empty otherwise.
lingual: # Optional. To launch on cluster, provide version, "1.1", keep quotes. Leave empty otherwise.
# Adjust your Hadoop cluster below
jobflow:
job_name: Snowplow ETL # Give your job a name
master_instance_type: m1.medium
core_instance_count: 1
core_instance_type: m1.medium
core_instance_ebs: # Optional. Attach an EBS volume to each core instance.
volume_size: 100 # Gigabytes
volume_type: "gp2"
volume_iops: 400 # Optional. Will only be used if volume_type is "io1"
ebs_optimized: false # Optional. Will default to true
task_instance_count: 0 # Increase to use spot instances
task_instance_type: m1.medium
task_instance_bid: 0.015 # In USD. Adjust bid, or leave blank for non-spot-priced (i.e. on-demand) task instances
bootstrap_failure_tries: 3 # Number of times to attempt the job in the event of bootstrap failures
configuration:
yarn-site:
yarn.resourcemanager.am.max-attempts: "1"
spark:
maximizeResourceAllocation: "true"
additional_info: # Optional JSON string for selecting additional features
collectors:
format: cloudfront # For example: 'clj-tomcat' for the Clojure Collector, 'thrift' for Thrift records, 'tsv/com.amazon.aws.cloudfront/wd_access_log' for Cloudfront access logs or 'ndjson/urbanairship.connect/v1' for UrbanAirship Connect events
enrich:
versions:
spark_enrich: 1.17.0 # Version of the Spark Enrichment process
continue_on_unexpected_error: false # Set to 'true' (and set :out_errors: above) if you don't want any exceptions thrown from ETL
output_compression: NONE # Compression only supported with Redshift, set to NONE if you have Postgres targets. Allowed formats: NONE, GZIP
storage:
versions:
rdb_loader: 0.14.0
rdb_shredder: 0.13.1 # Version of the Spark Shredding process
hadoop_elasticsearch: 0.1.0 # Version of the Hadoop to Elasticsearch copying process
monitoring:
tags: {} # Name-value pairs describing this job
logging:
level: DEBUG # You can optionally switch to INFO for production
#snowplow:
#method: get
#protocol: http
#port: 80
#app_id: ADD HERE # e.g. snowplow
#collector: ADD HERE # e.g. d3rkrsqld9gmqf.cloudfront.net
Any help on next steps for troubleshooting this problem would be extremely helpful. Thank you!